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Application of Critical-Region Scaling to 
Pure-Component Equations of State 1 

D. D.  Erickson 2 and T. W. Leland 2 

A critical scaling method for equations of state developed by Fox at the 
National Bureau of Standards has been extended to predict thermodynamic 
properties and all of the first and second derivatives of the chemical potential 
and density. This is done by using a new damping function and developing 
expressions which avoid all numerical evaluations of the derivatives needed in 
calculating thermodynamic properties. Using this procedure, an analytical 32- 
constant equation of state was scaled in the critical region for pure light 
hydrocarbons and for carbon dioxide. The BWRS equation was scaled for 
heavier hydrocarbons. Calculations of the saturated vapor and liquid densities 
of methane in the region from 175 K to the critical temperature of 190.5 K were 
improved, and the mean absolute error decreased from 0.153 without scaling to 
0.031 with scaling. Other derivative properties were also improved in the critical 
region for several of the lighter pure hydrocarbons. 

KEY WORDS: carbon dioxide; critical region; equation of state; hydrocar- 
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1. I N T R O D U C T I O N  

Dur ing  the past two decades several technological developments  have 

appeared which require equat ions  of state capable of predicting accurate 

P - V T  and  the rmodynamic  properties near  the critical condi t ions  for both  
pure componen ts  and  mixtures. In  current  engineering practice, mixture 

properties are obta ined from classical pu re -componen t  equat ions  of state 

by two principal  methods.  The first of these replaces the constants  in a 
pure -componen t  equa t ion  of state with compos i t ion-dependent  parameters  
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and the resulting equation is used to calculate mixture properties. The 
second method uses the reduced form of a pure-component equation of 
state as a reference fluid and assumes that dimensionless properties of the 
reference fluid are identical to those of the mixture when properly defined 
pseudocritical functions are used to form the reduced parameters of the 
reference. Although these mixture procedures give good results at con- 
ditions outside the critical region, there are some unsolved theoretical 
problems in modifying them to apply at conditions close to a critical locus. 
Consequently, this paper deals only with pure components as a necessary 
first step in the development of a procedure for accurate property predic- 
tions for mixtures at conditions near a critical line. 

2. M E T H O D  

The shape of the coexistence curve predicted by an analytical equation 
of state for a pure component can be significantly improved in the critical 
region by the method of Fox [ 1 ]. This method consists of transforming an 
analytical equation of state into a nonanalytical equation in a manner 
which preserves the classical behavior at conditions far from the critical but 
obeys scaling laws near the critical. This transformation is based on a state 
function, ~p, which measures the displacement or "distance" from the pure 
component critical point. The ~ function is defined as 

$ = P -  Pc - pc(Ft - Fto) - s T -  To) (1) 

The subscript c in Eq. (1) denotes a value at the critical point. The/~ term 
in Eq. (1) is a residual chemical potential, defined as 

= ( # -  #* )  + R T l n ( p v o )  (2) 

In Eq. (2)/~ is the chemical potential, Vo is a unit volume, and the asterisk 
indicates a property which the fluid at a specified temperature and density 
would have if it obeyed the ideal-gas law at these conditions. The ~ term is 
a residual entropy defined as 

= p { ( s  - s*)  + R[1 - ln (vop) ]  } (3) 

where s is the molar entropy. The distance function, ~, is zero both at the 
critical point and near the spinodal curve within the two-phase region. 
Outside the spinodal curve, ~ is positive and becomes infinitely large far 
from the critical point. The nonclassical equation of state can now be 
defined in terms of the following set of parametric equations: 

T ' =  r c + ( T -  To) gO (4) 
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/~'=/~(Pc, T ' )+  [/~-/2(;c, T)] gr (5) 

P' = P + po(~'- Ft) + 2c(T'- Tc) (6) 

In Eqs. (4), (5), and (6) nonclassical properties are denoted by primes. The 
0 and ~b terms in Eqs. (4) and (5) are functions of the critical exponents 
defined as 

2c~ 0 = (7) 
2-c~ 

~b=1-2/3 1+ ~ (8) 

The critical exponent c~ describes the isochoric heat capacity divergence at 
the critical, and the critical exponent /3 describes the approach of the 
saturated liquid and saturated vapor densities to the critica ! density, as 
shown below in Eqs. (9) and (10): 

Cv~(T-  To) -~ at p=po when T> Tc (9) 

( p L - p c ) ~ ( T c - T ) ~ ( p v - p c )  when T<To (10) 

where 

/3=0.353 and e =  1/7. (11) 

The symbol g, defined as the damping function, is a function of 0 only. The 
function g is zero at the critical point and monotonically increases to a 
value of unity as displacement from the critical increases. Consequently, at 
conditions far from the critical: T' ~ T and P'--* P, and the parametric 
Equations (4)-(6) then give properties described by the classical equation 
of state. 

Fox's original form of the damping function was defined as follows: 

Iw 71/; , ,/; +(O/pc);,4 j =[l+w(-P-~) "/4] (12) g 

where w and 2 are adjustable constants which are fitted to experimental 
data. This damping function becomes proportional to the fourth root of 0, 
as the critical point is approached. Therefore, nonclassical properties 
become scaled replacements for classical properties near the critical by 
means of the transforms in Eqs. (4) (6). This damping function was tested 
by using the Jacobsen and Stewart 32-constant BWR equation [2] with 
methane constants determined by Ely and Hanley [3]. This equation, 
when scaled using Eq. (12), predicts the shape and location of the 
coexistence curve accurately, but it fails to predict accurate derivative 

840/7/4-13 
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properties, especially in what is called the "crossover" region between the 
critical point and conditions where the original unscaled equation is 
satisfactory. In this crossover region, Eq. (12) predicts derivatives of 
P-V-T properties poorly. The predicted residual constant-volume heat 
capacity, for example, has some spurious discontinuities in its slope in this 
region. 

In this paper an improved damping function g was developed which 
gives more accurate P V - T  properties including their derivatives in the 
crossover region and connects smoothly with these properties and 
derivatives in the classical region. This revised damping function is 

g--exp{(v+(O/po),)ln[l+w(~-~)~/4] -1/'~} 

(13) 

where v, n, w, and 2 are adjustable constants. This improved damping 
function in Eq. (13) approaches the critical point in the same manner as 
Fox's original damping function, but in the crossover region it approaches 
the classical region like an exponential function. 

The four constants in Eq. (13) have been fitted to experimental data 
on the isobaric and isochoric heat capacities, speed of sound, pressure, den- 
sity, isochoric slopes of P vs T, isothermal slopes of P vs p, and saturation 
boundaries for the six compounds: methane, ethane, propane, isobutane, 
n-butane, and carbon dioxide. The 32-constant BWR equation of state is 
used as the unscaled equation for all of these substances except n-pentane 
and n-hexane. For n-pentane and n-hexane the analytic Benedict--Webb- 
Rubin-Starling [4] (BWRS) equation of state was used. The fitted 
parameters which accompany these equations are shown in Table I. In 
Fox's original paper, various nonanalytic properties were obtained by 
numerical evaluation of the first and second derivatives of the three proper- 
ties in Eqs. (4)-(6). In this work, exact expressions for five different non- 
analytic properties have been found. An expression for the density can be 
found by differentiation of Eq. (6) with respect to Eq. (5), as follows: 

p ' = ( ~ ' ]  = (P-P~ (lga) 
\a~ iT, pc+ 

where 

X= 1 + f~(p - Pc)[fi(P, T) - fi(po, T)] 

+ P~(%-go)+(P-Pc) -%(Pc, T) (14b) 
Pc Pc 
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Table I. Fitted Constants for the Revised 
Damping Function, Eq. (13) a 

T~ Pc 
Component (K) (g-mol- L 1) w 2 Y F/ 

Methane 190.555 10.15 0 .012237 3.8275 0.47631 0.04091 
Ethane 305.33 6.800 0 .02640  2 .5803  1.4138 0.09665 
Propane 369.85 4.995 0.0085929 4.53473 0.8756 0.00044062 
Isobutane 407.85 3.860 0.00233 3.798 0 .5697  4.1434 
n-Butane 425.16 3.920 0.008933 2.5881 0.8825 0.16835 
Pentane 469.65 3 .30  0 .126055 6,6073 0.21925 0.06797 
Hexane 507.68 2 .50  0 .050327 5.7068 0.5699 1.1348 
Carbon dioxide 304.21 10.60 0.08772 3.0422 0.06495 0.01637 

a Experimental data used in developing this table were selected from over 100 sources. A list of 
these can be obtained from the authors. 

and  
Sg) 1 

f =  ~ g (14c) 

An express ion for the nonana ly t i c  en t ropy  is ob ta ined  by differentiat ing 
Eq. (5) with respect  to Eq. (4), as shown below: 

L P--Po 

(P' -P~)  {~(po, T ' ) -  (QP(T'))  
no \-7-U-) 

OP 
(15) 

The second-o rde r  der ivat ive  proper t ies  are ob ta ined  in a s imilar  manner ,  

by differentiat ing Eqs. (14) and  (15) with respect  to Eqs. (4 ) - (6 )  as follows: 

=tT)tp,_--m777 g 1+ T' T 

(p-pc) 
+ { ( E - f 0 )  + (X)(f(O - 2~b) - E)  

P 

+ qbf[fi(p, T ) -  fi(p~, T)]  

x (p - p~)f(~ - O) + 02f2(T-- T~) 2 Cp} (16a) 
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where 
(os)! 

e = \a~s} f 
. p(Cp-C*)+RP 

Cp= T F(p-ec)[~(a2P) 
(16b) 

c,,(pc, T T)-c* 1 (16c) 

Similarly 

~r/,,,:t, -7--# )t,~)~,+,,e-eo; 
• (e~c: ~_cq[ - e~o) os] ,, ,~:T, e-ec jLI+(L~5) (e~ 

ctp 2(T-- To) p%c) ] §  ~ ~ o~(~,_ 

_(~_ ~ o~,~_~., ~+0~-~.~,~-o 0 

(t7) 

and also, 

(~,~ (~,-~,oV~.,~ (.'-eo){rcv(.c,r)-Cv*(r)l 

a(T') 2 Jp~J + \ p - , o o /  

x(c~ [1 g~162 Of(pj_p,,r (pj-e,r  

e' s~ Pg~ [1 x {(e J -  e~o) (pJ'-p, + 
1_ 

PiP - Pc) \~  L 
(P3' -- P%) eg~ - P' S + f(O - 0) (po%' -PcP'P'%c) gO 

x {ec( ' - ' r162 T)]}  ) 

(v- ~o)oi(p3- p~o)l} 
P 

( T -  T~) efg~ ' - P'~r 
p' I 

(18) 
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Using Eqs. (14a)-(14c) along with Eqs. (4)-(6), a procedure can be 
developed for relating the nonanalytic properties of a scaled equation of 
state to the analytic properties of a conventional classical equation. For 
example, suppose values are selected for the nonanalytic conditions T' and 
P'. The accompanying analytic properties T and P of the original classical 
equation can be assumed, as a first trial, to be equal to the selected non- 
analytic values T' and P'. From these trial T and P values, the distance 
function ~ is calculated from Eq. (1) and is then used to evaluate the 
improved damping function g in Eq. (13). A new set of T and P values are 
then obtained by simultaneous solution of Eqs. (4) and (6), with #' in 
Eq. (6) evaluated from Eq. (5). This simultaneous solution can be done 
either by successive substitution or by Newton-Raphson techniques. These 
new T and P values are used to repeat this procedure until convergence. 

The same type of calculation can be made to find the analytic values of 
T and p in a classical equation which accompany the preassigned values of 
T' and p' for a scaled nonanalytic equation. In this case, Eq. (14) for p' is 
used in place of Eq. (6). The first trial values of T and p are set equal to T' 
and p'. These trial values are then used to calculate all terms needed in a 
simultaneous solution of Eqs. (4) and (14) to obtain new values of T and p. 
These values then are used to repeat the process, which is continued to 
convergence. 

After a consistent set of T, p, T', and p' values are obtained in this 
manner, all other nonanalytic properties such as P', s', derivatives of 
P' -V ' -T '  properties, and all residual thermodynamic properties can be 
obtained by using Eq. (6) and Eqs. (15)-(18) for the nonanalytic form of 
the classical equation of state. 

Some of the results obtained with this method are presented in this 
paper. Figure 1 shows the coexistence curve for methane. The inner curve 
is obtained from the unscaled 32-constant BWR equation and the outer 
curve is predicted by its scaled form. The experimental data points are 
enclosed by the boxes. Unscaled equations of state predict a coexistence 
curve which is always too pinched near the critical point. The scaling 
always improves this shape by flattening the coexistence dome at the 
critical point. 

The data points in Fig. 2 show the isochoric slopes for methane 
obtained from the experimental data of Gammon and Douslin [5]. As 
Fig. 2 shows, scaling makes a significant improvement in predicting this 
derivative property. The classical equation falls between the two branches 
of the scaled curve and the data points. It cannot properly model the 
singularity in the isochoric slope at the critical point, and the scaled results 
are in much better agreement with the data. 

Figure 3 shows the isothermal slope of pressure vs density for 
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Fig. 1. Methane phase boundary. 
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methane. As before, the scaled equation, the lower of the two curves, gives 
much better results�9 Because of the difference between analytic and non- 
analytic critical exponents, the nonanalytic isothermal slope approaches 
zero at the critical point much faster than the classical result. 

Figure 4 depicts the isochoric heat capacity slightly above the critical 
temperature. This figure shows that scaling gives more nearly the right 
shape to the curve on each side of the critical density. In this particular 
case, the slope appears too large at the critical point. There are two 
plausible reasons for this. The first is the experimental difficulty in measur- 
ing simultaneously the heat capacity, which is becoming infinitely large 
near the critical point, and the density, which is subject to large fluc- 
tuations. A second source of error is inherent in the unscaled equation of 
state. The 32-constant BWR equation for methane predicts a critical den- 
sity around 10.23 g-mol. L -1, while the true critical density is closer to 
10.15 g-tool-L -1. This explains why the scaled curves seem to be shifted to 
the right in all of the Figures presented here. The distance function ~ is 
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Fig. 2. Methane isochoric slope (63P/~3T)p at  the reduced tem- 
perature of 0.999711. The experimental data points, which are 
enclosed by the small squares, were measured by Gammon and 
Douslin [5]. 

affected strongly by the location of the critical density as predicted by the 
unscaled equation. For  this scaling procedure to be most successful, an 
accurate critical point prediction by the unscaled equation of state is essen- 
tial. 

A more fundamental problem in predicting heat capacities near the 
critical is the fact that scaling itself is inadequate to account for all aspects 
of the heat capacity behavior in this region. This is explained by Chapela 
and Rowlinson [6]  and Nicoll [7].  Analyses of the problem by Wegner 
[8]  and by Ley-Koo and Green [9]  have shown that two types of correc- 
tion to the classical heat capacity are needed. For  the constant-volume heat 
capacity, cv, these two corrections are (i) the scaling correction in terms of 
[ ( T -  Tc)/Tc]-~, where ~ is the critical exponent "~0.14; and (ii) a series of 
"correction-to-scaling" terms in which the leading term is proportional to 
[ ( T - T c ) / T o ]  ~J with the exponent A=0.5 ,  as developed by Wegner. 
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Fig. 3. Methane isothermal slope (6qP/63p) T at the reduced tem- 
perature of 1.001548. The experimental data points, which are 
enclosed by the small squares, were measured by Gammon and 
Douslin [5]. 

Because the higher-order terms in this series are difficult to evaluate, 
Wegner has shown that the correction-to-scaling series can be 
approximated by the leading term in [-(T-To)/To] ~ plus a constant. 

Moldover [ 10] has tested this idea and pointed out that in a critical- 
region cv expression which consists only of a scaling term with the 
exponent c~, a single correction-to-scaling term with the exponent A, and a 
constant term, the coefficients in the expression cannot be determined 
unambiguously from experimental data. Furthermore, the constant term 
does not correspond to a general background contribution which exists 
outside the critical region. This observation is supported by the work of 
Lipa et al. [-11], who fit Cv data for CO2 in the critical region to an 
expression involving only a scaling correction with the exponent e and a 
constant term. The leading temperature-dependent correction to scaling 
with the exponent A was omitted entirely. Although the constant term is 
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Fig. 4. Methane isochoric heat capacity (Cv) at the reduced tem- 
perature of 1.000394. The experimental data points, which are 
enclosed by the small squares, were measured by Gammon and 
Douslin [5]. 

double valued at the critical with one value to be used when T <  To and 
another to be used when T <  To, the fit to the experimental data is as good 
as that obtained when the leading correction to scaling term is included. 

Consequently, the parametric equations used in this work involve only 
a single scaling correction. Considering the accuracy of the data available 
for fitting parameters in these equations and the inability of classical 
equations of state to predict accurate critical volumes, a more elaborate 
procedure is not justified at this time. 

3. C O N C L U S I O N S  

Some general comments can be made about  this method, based on the 
pure components studied. In all cases, this procedure makes significant 
improvements in predictions of the density, isochoric slopes of P vs T, and 
isothermal slopes of P vs p. Predictions for isochoric heat capacity were 
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also improved in comparison with those of the unscaled version, but in 
most cases there are still large errors near the critical. Predictions for 
pressure and isobaric heat capacity either were slightly improved or 
showed no improvement. Therefore it appears that this scaling procedure is 
most useful in improving properties that were nonsingular in derivations 
from classical equations of state. An important feature of the improved 
damping function developed here is that even for the derivative properties, 
the transition through the crossover region from nonanalytic to classical 
behavior is very smooth. This represents an important improvement over 
earlier theories. 
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